Method-flow: A software development visualisation technique for
multi-dimensional program navigation and composition

Daniel Bradley
School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia, 4072
daniel.bradley@acm.org

Abstract

Mainstream Integrated Development FEnvironments
(IDEs) predominantly focus on using the file hier-
archy for navigating software. During navigation
each file is obscured by the next leading to disori-
entation and a loss of task awareness. This paper
presents the method-flow software visualisation tech-
nique, which supports software navigation and com-
position by displaying traversed methods in adjacent
code editor columns. The technique has now been im-
plemented within a programming environment called
Visuocode.

Keywords

software development visualisation, software naviga-
tion, software composition, software exploration, pro-
gramming dimensions, program slicing, visuospatial
programming

1 Introduction

Mainstream Integrated Development Environments
(IDEs) predominantly focus on using the file hier-
archy as a means of navigating software. While
some environments support hyperlinked method nav-
igation, source code remains presented in text edi-
tors that show the contents of the entire source code
file. The programmer is limited to only viewing a sin-
gle method unless, by luck or design, an associated
method is placed either before, or after, that method
in the file.

The call-graph of programs written in object-
oriented languages such as Java are usually orthog-
onal to the file structure of their source code because
each class is stored in a separate text file. In order
to understand what is happening within a program,
programmers often navigate the call-graph of a pro-
gram, which necessitates navigating through a po-
tentially large number of different source code files.
This often results in programmers becoming disori-
ented — they forget what methods calls brought them
to where they are — and losing task awareness — they
forget why they started performing their current task
(de Alwis & Murphy, 2006) [1]. This occurs because
when another method is navigated to, the editor is ei-
ther scrolled, replaced, or obscured. This often results
in the programmer switching back and forth between
different files — a behaviour referred to as thrashing
(de Alwis & Murphy, 2006) [1].

Programming environments also inflict class cre-
ation overhead — the cost of the interruption when a
programmer creates a new class. This cost reflects not
only time lost, but also the distraction caused to the

Cite as bibtex @misc:

programmer. It is hypothesised that this overhead,
combined with the difficulty of seeing both contexts
at once, encourages programmers to avoid separat-
ing out code into methods or new classes when a new
level of abstraction is appropriate. The result is that
classes and methods may be larger than appropriate
compromising software structure.

Text editor based programming environments have
previously been described as one-dimensional (My-
ers, 1986) [2]. To mitigate the problems described
above, programming environments need to support
additional programming dimensions. Such an envi-
ronment would allow the programmer to predomi-
nantly navigate between methods and classes without
resorting to auxiliary navigation.

This paper introduces the method-flow' software
visualisation technique. Method-flow allows the pro-
gramer to navigate the call-graph of a program using
adjacent editor columns. During development, ad-
jacent columns can be used to create new software
structures without disrupting the existing program-
ming context, and minimising interruption.

The structure of this paper is as follows: Sec-
tion 2 further describes the multi-dimensional aspects
of software; Section 3 introduces the method-flow
software visualisation technique; Section 4 describes
the Visuocode programming environment; Section 5
shares findings of initial informal evaluation; Section 6
compares and contrasts method-flow to related work;
and Section 7 provides a summary.

2 Programming dimensions

Parent
Method

v

30 dimension

—— 1% dimension

Method

2 dimension

\J

Figure 1: Three programming dimensions

2.1 The 1st dimension

If a text editor can be described as being one-
dimensional due to only being able to see the state-

1This technique has been formerly referred to as ‘code-flow’

Bradley, Daniel R. (2012) Method-flow: A software development visualisation technique for multi-dimensional program
navigation and composition. http://www.danielbradley.org/publications/pdf/2012Bradley-1.pdf. October, 2012.

Daniel Bradley
Cite as bibtex @misc:
Bradley, Daniel R. (2012) Method-flow: A software development visualisation technique for multi-dimensional program navigation and composition. http://www.danielbradley.org/publications/pdf/2012Bradley-1.pdf. October, 2012.

Daniel Bradley

Window Title

Toolbar

Semi.main

Semi.processFiles

public static void main(String[] args)
Vector<String> files = processArgumentsAndReturnFilesPassedByUser(arg
if (0 == files.size()) displayUsageAndExit();

if (canCreateTargetDirectory())

static void process(Vector<String> files)
Iterator<String> it = files.iterator();

while (it.hasNext())
{
try

process(files);
else

printErrorAndExit();

Reader r = new FileReader(new File(it.next()));
LineNumberReader reader = new LineNumberReader(r);

>

processSourceFile(reader);

}
catch (IOException ex) { /* do nothing */ }

Source code now visible in two dimensions

Figure 2: A development environment that supports two programming dimensions

ments of one chosen method at a time, it follows that
a program without procedures can be considered to be
one-dimensional because all statements are executed
within the same layer of abstraction.

2.2 The 2nd dimension

Procedures and functions add another programming
dimension as they enable layers of abstraction — sub-
procedures allow an arbitrary number of statements
to be considered as one statement. For example, the
following statement abstracts the mathematical cal-
culations required to return the square-root of ‘30’

x = squareRoot(30);

Similarly, in an object-oriented programming lan-
guages methods provide an extra layer of abstraction
and therefore are also considered to represent the sec-
ond dimension. For example, the following statement
provides a similar abstraction to the previous exam-
ple:

x = anlInteger.squareRoot();

2.3 The 3rd dimension

A third dimension, however, is added through class
inheritance as overriding methods may possibly also
call the method they overrode within an ancestor
class. When a statement instantiates an object by
calling a constructor, at one level of abstraction an
object is returned that is appropriately initialised. At
a lower level of abstraction, the constructor first calls
its parent’s constructor to initialise the state of any
data members defined within the parent, then exe-
cutes its own statements to initialise its own state
and potentially override the state of the parent class.
During software composition, the programmer is of-
ten responsible for both of these layers of abstrac-
tion. It is important that the programmer fully un-
derstands what is happening in the calling context —
where the object is being instantiated — and in the
called context — the initialisation of the object.

3 The method-flow visualisation technique

It is often suggested that the programmer may sim-
ply manually arrange editors to see multiple program-
ming dimensions at once. This proves more difficult
than one might expect due to modern IDEs such as
Eclipse and X-Code constraining how files are pre-
sented within the workspace window.

X-Code 4 provides companion editors, which can
automatically change based on the file in the primary
editor — for example, it may be set to display the
header file of a C-style language source file. In prac-
tice, however, the contents of this editor is often man-
ually selected.

In Eclipse each file is opened in a tabbed editor.
While a tab may be dragged to the side of the editor
area to split the screen between two files screen space
soon becomes a limiting factor as the editor area is
constrained. Also another editor can only be used if
the method is located in a different file.

Even with stand-alone text editors this strategy
proves unworkable as often a programmer will want
to browse through multiple layers of abstraction.

3.1 Supporting the 2nd dimension

A simple technique for supporting the second pro-
gramming dimension would be to allow the program-
mer to cause another editor to be opened beside the
existing editor. As shown in Figure 2, following a hy-
perlinked method call would cause the called method
to be displayed adjacent to the existing method. Cru-
cially, however, an arbitrary number of editors should
be able to be shown by scrolling the leftmost edi-
tors off the screen. The benefit of this technique is
that a programmer can refer to an arbitrary number
of methods without disrupting the existing program-
ming context.

When a new method is required, the program-
ming environment would be able to recognise a non-
resolving method-call and automatically create and
display the new method skeleton.

Window Title

Toolbar

Semi.process

TextFile

static void process(Vector<String> files)

Iterator<String> it = files.iterator();
while (it.hasNext())

SourceFile source_file = new SourceFile(target, it.next());
source_file.process();

public TextFile(String filename)

{
by A
{
Reader r = new FileReader(new File(filename));
this.reader = new LineNumberReader(r);

catch (FileNotFoundException ex)

/* leave reader null */

}

\J

: >

SourceFile extends TextFile

public SourceFile(String sourceFile, String targetFile)

super(sourceFile);
this.target = targetFile;
}

Source code now visible in three dimensions

Figure 3: A development environment that supports three programming dimensions

3.2 Supporting the 3rd dimension

The third programming dimension is brought about
through method calls to overridden methods and con-
structors in an ancestor class. A method of visualising
such method calls is to identify the target method
and display it above the called method. Figure 3
shows an example with two constructors — Source-
File and TextFile — however an arbitrary number of
such methods could also be stacked upon each other.
The benefit of this representation is that (in the case
of constructors at least) the execution of statements
should proceed from the top of the screen down to
the bottom of the screen.

Alternatively, such method calls could be dis-
played in another editor column. However, doing so
would consume more screen real estate than other-
wise, and that column editor would also be replaced
if another method hyperlink were followed.

3.3 Method-flow

‘Method-flow’ is the name we have given to this tech-
nique of software navigation. Formally: The method-
flow software visualisation technique explicitly sup-
ports software navigation and composition by allow-
ing the programmer to traverse a method call-graph
using adjacent editor columns.

In each editor column, method calls are presented
as hyperlinks. If a hyperlink is followed, a new column
is stacked to the right of that column. As more text
columns are added, the leftmost columns scroll off the
left side of the screen.

3.4 Program composition using method-flow

During program composition, when a programmer de-
cides to create a new method they have a similar prob-
lem: if creating a method in a different class they
must open that file in a new editor, which either re-
places or obscures the current editor; or if creating
a method in the current class they must scroll their

editor to the desired position for the method, then
return when completed.

When using method-flow, a new class or method
can be displayed adjacent to the existing program-
ming context in a new editor column.

4 Visuocode

The current implementation, called Visuocode, now
supports program composition and is available for
download 2. The programming environment consists
of two types of window the workspace manager and
associated flow windows. The following terminology
was intentionally chosen to be analogous to terminol-
ogy used by other programming environments.

4.1 The workspace manager

The workspace manager (see Figure 4) allows the pro-
grammer to manage a collection of projects. Each
project represents a collection of one or more Java
packages that might be bundled together within a
single Java jar archive for distribution. A simple
workspace might link to only one project while oth-
ers may link to many. Projects may be shared by any
number of workspaces.

When a project is added to the workspace manager
its Java source files are parsed and a tree representing
its class hierarchy is added beneath the “Workspace
Projects” node. Following a class or method name
will cause a flow window to appear.

4.2 The flow window

Initially, the flow window contains a single column
editor. Each column editor contains a class attributes
area and a method editor area. The class attributes
area contains an editable class field, as well as three
editable field lists that allow imports, enumerations,
and class members to be altered.

2

www.visuocode.com

|7 Ix.chworkspace

class PushbackReader

| ctass character

¥Workspace projects Imparts

Imports

¥ libix
Pix

import ix.#;
import java.io.*;
¥ libparser

Enums

¥org.ixlang.parser Enums

¥character
Character(char) | Character

Members

getValuel) |char Members.

private char value;

isAlphalchar) [boolean
isAlphanumeric(char) |boolean
isControl(char) |boolean
isDigit(char) [boolean

private stack<Character> stack;
private Reader file;

isSymbol{char) |boolean A ;{:ubhc char read(}

isWhitespace(char) |boolean FETTrTIEiT
¥PushbackReader
PushbackReader(string) |PushbackRea

read() |char 3%

if (@ < this.stack.size())
{

unread (char) |void :a ch = chx.getValue();
else
{

4 try

45 catch { IOException ex)
{

47 ch = @8;
1

5 return ch;

Character chx = this.stack.pop();

{
43 ch = (char) this.file.read();

% public char getValue()
i {

58 return this.value;

Figure 4: Visuocode consists of two types of window the workspace manager, and the flow window

The method editor area contains a stack of one
or more method editors. If the column editor was
opened by clicking a class name in the workspace
manager, there will be a method editor for each of
the class’s methods ordered alphabetically.

Within method editors, resolving method calls are
represented as blue hyperlinks. When followed, an
editor column for that method is inserted to the right
of the existing column shifting all existing columns
left. As all columns sit within a scroll-pane, the pro-
grammer can scroll back to the left to view obscured
column editors.

4.3 Support for software creation

Method calls that fail to resolve are represented as red
hyperlinks. When followed, an editor column contain-
ing a method skeleton is displayed. The method call is
analysed to determine in which class the new method
should be inserted. For example, a non-resolving im-
plicit method call, or a method call explicitly invoked
on this, would be inserted into the current class, e.g.,

int x = getValue();
or

int x = this.getValue();

Where a non-existent method is invoked upon a
specific object, it would be inserted into the class
corresponding to that object. For example, assum-
ing that the getArea method has not been defined in
the following code snippet, following the method call
would display a column editor for the Shape class that
contains an appropriate method skeleton, e.g.,

Shape aShape = new Shape();

int x = aShape.getArea();

4.4 Architecture

Visuocode has been implemented to take advantage
of the Mac OS Cocoa programming API. The user in-
terface has been implemented in Objective-C++ and
depends on a variety of libraries written in Objective-
C++, C++, and C.

Visuocode

MethodFlow (Obj C++) Astral (C++)

Open XDS (C++)
Open XDS Core (C)

Figure 5: Visuocode architecture

Figure 5 shows the architecture of the Visuocode
application. Open XDS provides a set of cross-
platform class libraries for developing C++ programs
similar to the Java class library. Astral includes li-
braries that are used for source tokenization and pars-
ing, as well as source code management. MethodFlow
consists of a model library that wraps the Astral li-
braries and various wview libraries. Visuocode, itself,
is little more than a wrapper generated by X-Code.

4.5 Limitations

The following limitations have been identified in the
current implementation:

1. Visuocode only supports navigation in the 2nd
dimension — it does not support showing ancestor
methods within the same editor column.

2. Currently, classes need to be manually created
using a dialog box. In the near future classes will
be able to be instantiated by click non-resolving
class types.

3. The system currently supports ’simple’ enumer-
ations, however, class-like enumerations are not
currently supported.

4. Due to the system using a form of static analy-
sis, the system is currently unable to identify the
runtime type of polymorphic objects.

5 Evaluation

The Visuocode programming environment has been
informally evaluated in preparation for an upcoming
study. While initial use of the system has informally
validated the concept, it has also highlighted the fol-
lowing problems that will need to be addressed.

5.1 Strangeness

Because the Visuocode environment represents code
at a higher level of abstraction to file-based editors
there is a feeling of being “out-of-control”. This feel-
ing lessens after a short period of time as the program-
mer is able to concentrate on programming instead of
the environment. This feeling will need to be taken
into account when planning participant training for
future studies.

5.2 Lack of incremental compilation

Programmers have become accustomed to integrated
compilation, which allows the environment to high-
light which statements contain syntactic errors.
While Visuocode parses the source code in order to
populate its own internal data representation, it does
not explicitly provide feedback to the user regarding
incorrect syntax. It is expected that code will be com-
piled using an external application or command line
tool. To aid problem detection, line-numbers have
been added to method editors that allow the output
from external tools to be cross-referenced with the
Visuocode display.

5.3 Inability to identify runtime type of
polymorphic objects

When an object is passed to a method, it is assumed
to be of the type indicated in the method signa-
ture when it may actually be a sub-type. Due to
Visuocode using a form of static analysis it has no
knowledge of how the passed object was initially in-
stantiated. Therefore, when a method call on such an
object is followed it may cause an incorrect column
editor to be displayed. As this can confuse and dis-
tract the programmer in the future the system will
be modified to track the type of instantiated objects
through method calls.

5.4 Inability to navigate juxtaposed call-
graphs

A requested feature is for the programmer to be
able to also navigate “backwards” up juxtaposed call-
graphs by being shown all methods that call the cur-
rent method. It is currently being considered how
best to represent this in the Visuocode interface.

6 Related work

The method-flow visualisation technique has previ-
ously been implemented as a software exploration tool
called CodeFlow SE. This tool, which was developed
in the Java programming language, is available for
download from the code-flow website.?

3www.code-flow.com

6.1 Program slicing

Conceptually the method-flow visualisation technique
may be likened to a visual form of program slicing
(Weiser, 1981) [3]. While originally program slicing
referred to the identification of the subset of a pro-
gram that generated a particular output, in the soft-
ware visualisation literature slicing often refers to a
logical subset of a program that is related to a spe-
cific statement. Various tools have been developed
that represent this information. The Ghinsu tool uses
a system dependence graph to highlight code state-
ments that are related to a specified statement (Li-
vadas & Alden, 1993) [4]. The SeeSlice tool presents
source code as “code-thumbnails” and emphasises the
code that belongs to a particular slice (Eick, Steffen
& Sumner Jr, 1992) [5].

Unlike these tools, method-flow requires the user
to manually select which methods along a branch of
a call graph are shown.

6.2 Software exploration

A key aspect of method-flow is the ability to navigate
down a call-graph. Software exploration tools provide
similar functionality, however such tools usually pro-
vide an alternative representation such as a stylised
UML-style diagram (Rigi, SHriMP, Rolo) (Mueller &
Klashinsky, 1988) [6], (Storey et al., 2002) [7], (Sinha,
Karger & Miller) [8], or a graph view (Whorf, Vi-
sual Call Graph) (Brade et al., 1992) [9], (Bohnet
& Déllner, 2006) [10]. The user is then able to ‘drill
down’ to the statement level by opening a source code
viewer.

Such tools are often intended to aid the under-
standing of large software systems during mainte-
nance, and may also prune the presented graph us-
ing slicing techniques. In contrast, method-flow is
intended for use during software development and is
specifically intended to allow the comparison of source
code between methods along a branch of a program’s
call-graph.

6.3 Programming environments

6.3.1 In-lined code

Fluid Source Code Views allows the contents of called
methods to be shown inline within an existing con-
text (Desmond, Storey & Exton, 2006) [11]. This
work and method-flow share a similar aim — to view
the statements of a lower level of abstraction within
the current context. However, a key difference be-
tween the two representations is that method-flow
preserves the original programming context while the
other does not as a single method call is replaced with
multiple statements.

6.3.2 Block-emphasising environments

Emphasising the display of syntactic blocks (e.g.,
methods) rather than entire files is not a new con-
cept. The Pecan system (Reiss, 1984) [12] provides a
number of different views including a generated flow
chart of functions, a syntax directed editor, and a
data-structure view.

The UQ Star system similarly provides displays
that focused on procedure blocks (Welsh, Broom &
Kiong, 1991) [13].

Method-flow is differentiated from these systems
as it allows an arbitrary number of column editors to
be stacked adjacent to each other within a scroll-pane.

6.3.3 Desktop metaphors

Code Thumbnails represents source code as a “thumb-
nail image of the entire document” in either a side-
bar associated with a specific file or within a Code
Thumbnail Desktop that presents such a view for all
files (DeLine et al., 2006) [14]. This concept was later
extended as Code Canvas which extends the Code
Thumbnail Desktop concept to provide a zoomable
interface that allows the programmer to zoom out to
see a fixed spatial representation of a software code
base (a code map) or zoom in using a semantic zoom
to show different amounts of information at different
zoom points.

In contrast to method-flow, the Code Canvas sys-
tem supports viewing multiple levels of abstraction
by zooming in and out of software systems, whereas
method-flow allows the direct navigation between
linked methods.

Code bubbles is an impressive environment that
displays methods in bubbles upon a “continuous vir-
tual screen”, which may be scrolled to either the left
or right (Bragdon et al., 2010) [15]. Like method-
flow, methods are represented in individual editors.
Called methods may be manually “budded-off” and
arranged in the proximity of the originating bubble
allowing a programmer to view multiple levels of ab-
straction at once — in this way a chain of method
bubbles may be constructed. Due to the obvious
space constraints related to displaying multiple bub-
bles, Code Bubbles implements code reflow and eli-
sion, which breaks statements at intelligent points to
minimise disruption to comprehension.

Apart from the use of the desktop metaphor, a
key contrast between method-flow and Code Bub-
bles is that (like Code Canvas) Code Bubbles re-
quires that budded-off bubbles be manually arranged
on the desktop. Bubbles may also be arranged in
scattered groups related to different tasks with the
aim of allowing the preservation of spatial memory.
In contrast, the method-flow visualisation technique
has been specifically designed to not need manual ar-
rangement of its column editors. Also a key inten-
tion of method-flow is that the appearance of method
source code is not altered by techniques such as re-
flowing, or code elision.

7 Summary

This paper has introduced the method-flow soft-
ware visualisation technique, which provides a novel
method for a programmer to view multiple program-
ming dimensions during software development. The
technique supports software navigation that main-
tains the programmer’s existing context and also al-
lows for the convenient composition of new software
structures. An implementation, Visuocode, which is
available to download has been described, as well as
the findings of an initial informal evaluation. Method-
flow has also been compared and contrasted against
related work.

Acknowledgements

I would like to thank my supervisor Dr Ian Hayes
who has provided valuable feedback and suggestions
on the drafts of this paper.

References

[1] B. de Alwis and G. Murphy, “Using visual mo-
mentum to explain disorientation in the Eclipse
IDE,” in IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 51 —54,
September 2006.

[2] B. Myers, “Visual programming, programming
by example, and program visualization: a tax-
onomy,” in Proceedings of the SIGCHI Confer-
ence on Human factors in Computing Systems,
pp- 59-66, ACM New York, NY, USA, 1986.

[3] M. Weiser, “Program slicing,” in Proceedings
of the 5th International Conference on Software
Engineering, ICSE 81, (Piscataway, NJ, USA),
pp- 439-449, IEEE Press, 1981.

[4] P. Livadas and S. Alden, “A toolset for program
understanding,” in Proceedings of the 1993 IEEE
Second Workshop on Program Comprehension,
pp. 110-118, 1993.

[5] S. Eick, J. Steffen, and E. Sumner Jr, “Seesoft-a
tool for visualizing line oriented software statis-
tics,” IEEE Transactions on Software Engineer-
ing, vol. 18, no. 11, pp. 957-968, 1992.

6] H. A. Mueller and K. Klashinsky, “Rigi — a
system for programming-in-the-large,” in Pro-
ceedings of the 10th International Conference on
Software Engineering, ICSE ’88, (Los Alamitos,
CA, USA), pp. 80-86, IEEE Computer Society
Press, 1988.

[7] M. Storey, C. Best, J. Michaud, D. Rayside,
M. Litoiu, and M. Musen, “SHriMP views: an
interactive environment for information visual-
ization and navigation,” in Conference on Hu-
man Factors in Computing Systems, pp. 520-
521, ACM New York, NY, USA, 2002.

[8] V. Sinha, D. Karger, and R. Miller, “Relo:
Helping users manage context during interactive
exploratory visualization of large codebases,”
in IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 187 =194, sept.
2006.

[9] K. Brade, M. Guzdial, M. Steckel, and
E. Soloway, “Whorf: a visualization tool for soft-
ware maintenance,” in Proceedings of the 1992
IEEE Workshop on Visual Languages, pp. 148—
154, 1992.

[10] J. Bohnet and J. D”ollner, “Visual exploration
of function call graphs for feature location in
complex software systems,” in Proceedings of the
2006 ACM symposium on Software visualization,

pp- 95-104, ACM New York, NY, USA, 2006.

[11] M. Desmond, M. Storey, and C. Exton, “Fluid
Source Code Views,” in Proceedings of the
14th IEEFE International Conference on Program
Comprehension (ICPC’06), pp. 260-263, IEEE
Computer Society Washington, DC, USA, 2006.

[12] S. Reiss, “Graphical program development with
PECAN program development systems,” ACM
SIGPLAN Notices, vol. 19, no. 5, pp. 30—41,
1984.

[13] J. Welsh, B. Broom, and D. Kiong, “A design
rationale for a language-based editor,” Software:
Practice and Experience, vol. 21, no. 9, pp. 923—
948, 1991.

[14]

[15]

R. DeLine, M. Czerwinski, B. Meyers, G. Veno-
lia, S. Drucker, and G. Robertson, “Code thumb-
nails: Using spatial memory to navigate source
code,” in IFEE Symposium on Visual Lan-
guages and Human-Centric Computing, pp. 11—
18, IEEE, 2006.

A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karu-
muri, W. Cheung, J. Kaplan, C. Coleman,
F. Adeputra, and J. J. LaViola, Jr., “Code bub-
bles: A working set-based interface for code un-
derstanding and maintenance,” in Proceedings
of the 28th International Conference on Human
Factors in Computing Systems, CHI ’10, (New
York, NY, USA), pp. 2503-2512, ACM, 2010.

