
Visuocode: A software development environment
that supports spatial navigation and composition

Daniel R. Bradley
School of Information Technology and

Electrical Engineering
The University of Queensland

Brisbane, Australia, 4072
Email: daniel.bradley@uq.edu.au

Ian J. Hayes
School of Information Technology and

Electrical Engineering
The University of Queensland

Brisbane, Australia, 4072
Email: ian.hayes@itee.uq.edu.au

Abstract—Navigating through software is an integral part
of software development. Studies have identified that during
navigation programmers often become disoriented and lose task
awareness. The method-flow visualisation technique displays tra-
versed methods in adjacent editor columns. This paper presents
the Visuocode software development environment, which is an
implementation of method-flow that, in addition to navigation,
supports program composition.

I. INTRODUCTION

Navigating through software is an integral part of software
development. Such navigation often follows the software’s
flow of execution from source file to source file. As an
opened source file usually hides the existing editor – either
by replacing the current editor, or by opening the source file
in a new active tab – programmers can become disoriented
and lose task awareness [1].

During a study, Ko et al observed that nearly 34 percent of
developers’ navigations “seemed to be for the purpose of juxta-
posing a set of code fragments” [2]. While, some environments
allow source files to be opened in separate windows, or for a
tab to be dragged to split the window between two files, this
is only workable for a small number of files. Additionally, not
all environments support the simultaneous viewing of multiple
locations within a single source file. As a result, programmers
often switch back and forth between different files or different
locations in the one file – a behaviour referred to as thrashing
[1].

Method-flow is a visualisation technique that allows a pro-
gramer to navigate the call-graph of a program using adjacent
editor columns that are contained within a scrollable “flow-
view”. Method-calls are represented as clickable hyperlinks
that, when clicked, cause just that method to be displayed in
a new editor column adjacent to the calling method. The pro-
grammer may scroll the flow-view back and forth to see prior
methods in that branch of the call-graph. Thus method-flow
allows the programmer to navigate based on software structure
rather than file structure. We have previously implemented
method-flow within the Code Flow software exploration tool.1

This paper presents the Visuocode software development
environment, which is an implementation of method-flow that,

1Available from www.code-flow.com.

in additional to navigation, also supports program composition.
For development, adjacent columns can be used to create new
software structures without affecting the existing programming
context. For navigation, the programmer may scroll the flow-
view to see, or edit, any previously traversed method in the
current branch of the call-graph.

The structure of this paper is as follows: Section II sum-
marises background and related research; Section III details
the method-flow visualisation technique; Section IV describes
the Visuocode programming environment; Section V discusses
similarities and differences between Visuocode and related
work; Section VI lists the research questions we seek to
answer; Section VII briefly outlines future work.

Fig. 1. The method-flow visualisation technique uses an arbitrary number of
editor columns, which are contained within a scrollable flow window. As the
programmer navigates down a branch of the program’s call-graph, new editor
columns are displayed adjacent to the calling method.

II. BACKGROUND

Programmer disorientation has been observed during soft-
ware maintenance tasks on unfamiliar code [2], as well as
while browsing class hierarchies for the purpose of code reuse
[3]. De Alwis and Murphy describe disorientation as occurring
when “developers lose the context or relevancy of their recent
actions to their overall goal” [1]. They identified three factors
that may lead to disorientation:

1) The absence of connecting navigation context during
program exploration;



2) Thrashing between displays to view necessary pieces of
code; and

3) The pursuit of sometimes unrelated subtasks.
This paper focuses on the mitigation of the first two factors

– related strategies include: history analysis; working sets;
spatial desktops; and inlined code.

A. History analysis

History analysis can provide navigation suggestions based
on prior behaviour. These systems seek to reduce disori-
entation by reducing the number of classes navigated. The
NavTracks system [4] creates a model of relationships between
files based on prior navigation history then unobtrusively
suggests files of immediate interest using a “Related Files”
view [5]. Mylar is a related system that uses a degree-of-
interest model to drive filtered views that highlight likely task
related elements.

B. Working sets

Software navigation is often for the purpose of finding
code “fragments” that are related to the current task – this is
referred to as the “working set” [6], or alternatively as a “task
context” [2]. Environments that support working sets allow the
programmer to group arbitrary sections of source files together
that are related to a particular task. These systems seek to
reduce disorientation by eliminating the need for navigation.
Knuth’s WEB “literate programming” system might be viewed
as a pre-cursor to such environments as it emphasised creating
literate source where “concepts have been introduced in an
order that is best for human understanding” [7].

The Sheets Hypertext Editor [8] provides similar capabilities
through the use of file-like “sheets”, which contain linear
groupings of arbitrary code “fragments”. The Code Bubbles
environment [6] provides a virtual workspace upon which
methods may be arbitrarily placed (as bubbles) and called
methods may be “budded off” adjacent to the calling bubble
allowing the programmer to view methods involved in a certain
task. As the workspace is many times wider than the display,
multiple bubble groups can be arranged for different tasks.

C. Spatial desktops

In mainstream programming environments, navigation is
usually achieved by using an auxiliary representation of the
class hierarchy. While some environments list the methods
available within a class, others require the programmer to
scroll through the file to find the method. Apart from the
time taken, such navigation also assumes that the programmer
can remember the names of the package, class, and desired
method.

In contrast, spatial desktop systems provide a map-like lay-
out of source code on a 2D plane so that the programmer can
find a method “perceptually rather than cognitively” [9]. These
systems seek to reduce disorientation by making navigation
quicker and less of a cognitive activity.

Software Terrain Maps [9] presents a map of a code-base
that is inspired by a cartographic map. In one manifestation,

each method corresponds to a region of a hexagonal grid,
where the size of the method’s region is proportional to
the method’s textual size. As method positions will only
change as the code-base changes, the programmer may select
a desired method by selecting the map area corresponding to
the method. To keep the programmer oriented a “vapour trail”
could highlight recently accessed methods.

Code Thumbnails [10] and Code Canvas [11] present a more
traditional representation in the form of a thumbnail view of
the code base. The Code Thumbnails desktop displays each
source file as a thumbnail image that can be selected to take
the programmer to the indicated file. As the arrangement of
thumbnails is spatially consistent, the programmer may make
use of spatial memory to find the location desired. Code
Canvas [11] extends the Code Thumbnails concept by placing
the code thumbnails on a desktop that supports “semantic
zoom”, which shows “different levels of detail at different
levels of zoom” [11].

The previously mentioned Code Bubbles environment [6]
may also be considered a spatial desktop as the arrangements
of bubbles persist during, and between, programming sessions.

D. Inlined code
Environments that allow the inlining of code allow the

programmer to expand the contents of a called method in
place of the method-call instead of opening a new editor.
This reduces “thrashing” between files as such behaviour is
often due to attempting to compare a calling method and a
called method simultaneously (see Fluid Source Code Views
[12]). These systems seek to reduce disorientation by making
navigation unnecessary.

III. THE METHOD-FLOW VISUALISATION TECHNIQUE

‘Method-flow’ is the name we have given to a novel
technique for software navigation. The method-flow visuali-
sation technique explicitly supports software navigation and
composition by allowing the programmer to traverse a method
call-graph using adjacent editor columns.

In each editor column, methods are represented using
individual text editors and method- calls are presented as
hyperlinks within each editor. If a hyperlink is followed, a new
editor column is stacked to the right of the calling column. As
more text columns are added, the leftmost columns scroll off
the left side of the screen.

Although only a limited number of editor columns can be
seen, the use of a horizontally scrollable flow-view allows an
arbitrary number of editor columns to be added (see Fig. 1).
Because the window content can be easily scrolled, editor
columns can be easily brought back into view to allow the
programmer to follow the flow of execution.

The benefit of this technique is that a programmer can
explore down a branch of the call-graph without destroying
their initial programming context. At any time, the program-
mer is able to scroll back to the left to refresh their memory
regarding the context of the calling methods. As the methods
are consistently placed on a scrolling plane, we believe that
method-flow is able to leverage the use of spatial memory.



Fig. 2. Visuocode consists of two types of window: the workspace manager (left), and the flow window (right). The workspace manager is used to manage
projects and set the left-most editor column of the flow window. The flow window implements method-flow by allowing an arbitrary number of editor columns
to be contained within a scrollable flow view. In the image above, the programmer selected the nextToken method, then navigated to the parseNextToken
method, the parseWord method, then finally the isLetter method (see Fig. 3 for a closer look).

IV. VISUOCODE

Method-flow has now been implemented as a software
development environment called Visuocode, which supports
the Java programming language.2

The programming environment consists of two types of
window: the workspace manager and associated flow windows.
This terminology was chosen to be analogous to terminology
used by other programming environments.

A. The workspace manager

The workspace manager (see Fig. 2) allows the programmer
to manage a collection of projects. When a project is added
to the workspace manager its Java source files are parsed
and a tree representing its packages, classes, and methods,
is added beneath the “Workspace Projects” node. Selecting
either a class name or a method name will replace all existing
editor columns displayed within the flow-window with an
editor column corresponding to the selected method or class.

B. The flow window

The flow window (see Fig. 2) contains a horizontally
scrolling view that contains one or more editor columns.
Initially, the flow window contains a single column editor
corresponding to a method or class that was selected from
the workspace manager.

Each editor column is associated with a specific class and
contains a class attributes area and a method editors area.
The class attributes area contains an editable class definition
field, as well as three editable field lists that allow imports,
enumerations, and class members to be altered. The method
editors area contains a vertically scrollable stack of one or

2A recent development version is available from www.visuocode.com.

more method editors. If the column editor was opened by
clicking a class name in the workspace manager, there will
be a method editor for each of the class’s methods ordered
alphabetically.

1) Support for navigation: Within method editors, resolv-
ing classes are represented as crimson hyperlinks. Resolving
method-calls are represented as blue hyperlinks if the cor-
responding source code is available; otherwise (if a system
method) in a dark grey colour. If a hyperlink is clicked, an
editor column for that class is inserted to the right of the

Fig. 3. Each editor column contains a class attributes area, which allows the
class definition, imports, enumerations, and members to be edited.



existing column. If the hyperlink was a class type, all the
methods of that class will be presented alphabetically within
the method editors area; otherwise just the called method.

2) Support for software creation: Method-calls that fail
to resolve are represented as red hyperlinks. If clicked, the
method-call is analysed to determine in which class the new
method should be inserted and an editor column containing a
method skeleton is displayed. Where a non-existent method is
invoked upon a specific object, it would be inserted into the
class corresponding to that object.

Non-resolving class types are also presented as red hyper-
links that, when clicked, present a simple dialog to quickly
create the class. Once created, the class type may be clicked
to reveal a corresponding editor column.

V. DISCUSSION

Visuocode seeks to reduce disorientation by integrating
navigation, comprehension, and modification, into the same
user interface. Unlike history analysis, working set, and spa-
tial desktop systems, Visuocode currently requires the pro-
grammer locate their intended navigation starting point using
the workspace manager – a traditional package hierarchy
representation. Like working set and inlined code systems,
Visuocode can display a grouping of methods as long as they
exist on the same branch of the call-graph.

A benefit of the Code Bubbles [6] approach is that arbitrary
methods can be arranged so that complex interrelationships
can be better understood, however desktop space scarcity lim-
its the number of method “bubbles” that can be displayed. A
benefit of Visuocode approach is that it allows the programmer
to quickly perform a localised search of the call-graph until
an appropriate branch, for the current task, is found.

A benefit of the Fluid Source Code Views [12] approach is
that less horizontal screen space is used, while the benefit of
the Visuocode approach is that it preserves the visual integrity
of the calling method.

VI. RESEARCH QUESTIONS

How can spatial memory be leveraged during programming?
Spatial desktop systems and method-flow both seek to lever-

age spatial memory, but in very different ways. Method-flow
utilises spatial memory by presenting a spatially consistent
representation of a branch of a call-graph that is intended to
support working memory. Spatial desktops provide a spatially
consistent representation of the code base that both supports
working memory and long-term memory. How would the use
of both systems at once interfere with each other?

Do alternative-paradigm software development environments
affect software structure?

Visuocode and Code Bubbles [6] both present a novel
paradigm for the composition of software that allows the easy
creation of new methods juxtaposed to an existing program-
ming context. We believe that this allows programmers to
compose better structured code due to the reduction in mental
and time overheads related to creating new classes and/or
methods.

How do software composition and modification differ?

The majority of published empirical studies of program-
ming ask participants to perform software modification tasks
because of the time constraints involved with running a study.
Unfortunately, this means that there is a little data on the affect
of novel software development environments on software that
is created ‘from scratch’.

VII. FUTURE WORK

This paper has presented the Visuocode software devel-
opment environment, which implements the method-flow vi-
sualisation technique. We plan to evaluate the environment
using a mixed qualitative/quantitative observational study. In
the future, we will extend the system to better support the
representation of method-calls to superclass methods, as well
as add support for reverse navigation up the call-graph.

REFERENCES

[1] B. de Alwis and G. Murphy, “Using visual momentum to explain
disorientation in the Eclipse IDE,” in IEEE Symposium on Visual
Languages and Human-Centric Computing, September 2006, pp. 51–
54.

[2] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks,” Software Engineering, IEEE Transactions
on, vol. 32, no. 12, pp. 971–987, 2006.

[3] R. K. Bellamy and J. M. Carroll, “Re-structuring the programmer’s task,”
International Journal of Man-Machine Studies, vol. 37, no. 4, pp. 503–
527, 1992.

[4] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model
for ides,” in Proceedings of the 4th international conference
on Aspect-oriented software development, ser. AOSD ’05. New
York, NY, USA: ACM, 2005, pp. 159–168. [Online]. Available:
http://doi.acm.org/10.1145/1052898.1052912

[5] J. Singer, R. Elves, and M. Storey, “NavTracks: Supporting navigation
in software maintenance,” in ICSM’05. Proceedings of the 21st IEEE
International Conference on Software Maintenance, 2005, pp. 325–334.

[6] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: A
working set-based interface for code understanding and maintenance,” in
Proceedings of the 28th International Conference on Human Factors in
Computing Systems. New York, NY, USA: ACM, 2010, pp. 2503–2512.

[7] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[8] R. Stockton and N. Kramer, “The sheets hypercode editor,” Department
of Computer Science, Carnegie Mellon University, Tech. Rep. CMU-
02-80, 1997.

[9] R. DeLine, “Staying oriented with software terrain maps,” in Interna-
tional Conference on Distributed Multimedia Systems, 2005, pp. 309–
314.

[10] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and
G. Robertson, “Code thumbnails: Using spatial memory to navigate
source code,” in IEEE Symposium on Visual Languages and Human-
Centric Computing. IEEE, 2006, pp. 11–18.

[11] R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 207–210. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810331

[12] M. Desmond, M. Storey, and C. Exton, “Fluid Source Code Views,”
in Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC’06). IEEE Computer Society Washington, DC,
USA, 2006, pp. 260–263.


